Earlier in our class

Basic statistics ...
Suppose we have n observations: $x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{n}$
Find "b" to represent this data set.
To determine how good "b" is, we will cal culate

$$
\sum_{i=1}^{n}\left(x_{i}-b\right)^{2}
$$

and minimize it.
$\xrightarrow[\text { Calculus }]{ }$ the best ${ }^{\circ} b$ " $=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\overline{o e}$

$$
\frac{d}{d b}=0
$$

Suppose that we have n pairs of observations

$$
\underset{y_{1}}{\left(x_{1}, y_{1}\right),\left(\alpha_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(\alpha_{n}, y_{n}\right)}
$$

Find the "best" straight line that "fits" the observations.
Again, went to minimise square error

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2} \\
& \overline{-\cdots}=-\bar{v} \quad \mathbb{E X} \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

$$
\begin{array}{lc}
\begin{array}{l}
\text { calculus } \\
\frac{\partial}{\partial a}=0
\end{array} & a=\frac{a y-\cdots}{\overline{x^{2}}-(\bar{x})^{2}} \quad \mathbb{E Y} \bar{y}=1 \sum_{i=1}^{n} y_{i} \\
\frac{\partial}{\partial b}=0
\end{array} \quad b=\bar{y}-a \bar{x} \quad \mathbb{E}\left[X^{2}\right] \overline{x^{2}}=1 \sum_{i=1}^{n} \alpha_{i}^{2} .
$$

Here is how things get crazy... in statistics...

$$
\left(x_{1}, Y_{1}\right),\left(x_{2}, Y_{2}\right),\left(x_{3}, Y_{3}\right), \ldots,\left(x_{n}, Y_{n}\right)
$$

